

    
      
          
            
  
Introduction

Cegpy (/segpaɪ/) is a Python package for working with Chain Event Graphs (CEG). It supports learning the graphical structure of a Chain Event Graph from data, encoding of parametric and structural priors, estimating its parameters, and performing inference.

It is built on top of the Python network modelling package NetworkX.


Why use cegpy?

CEGs are a flexible family of graphical models that are suitable for exploratory analysis of processes with asymmetries.

This is the first python package for modelling with CEGs. It can handle processes exhibiting context-specific conditional independence relationships and/or structural asymmetries.

It is built with extensibility in mind and is open-source, so new models built on top of CEGs can be built on top of it, and be included into the package. Our aim is to enable researchers to work with CEGs without having to start from scratch. As such, contributions are welcome!



Installation

To use cegpy, first install it using pip:

$ pip install cegpy





The package is hosted on PyPi [https://pypi.org/project/cegpy/]!
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Creation of a Staged Tree


EventTree Class

The first starting point in constructing a Chain Event Graph (CEG) is to create
an event tree describing the process being studied. An event tree is a directed
tree graph with a single root node. The nodes with no emanating edges are
called leaves, and the non-leaf nodes are called situations.

In this example we work with a data set which contains 4 categorical variables; Classification, Group, Difficulty, and Response.

Each individual is given a binary classification; Blast or Non-blast. Each group is rated on their experience level: Experienced, Inexperienced, or Novice. The classification task they are given has a difficulty rating of Easy or Hard. Finally, their response is shown: Blast or Non-blast.

We begin by importing the data set and initializing the EventTree object, as shown below:



from cegpy import EventTree
import pandas as pd

df = pd.read_excel('../../data/medical_dm_modified.xlsx')
print(df.head())

#initialize the event tree
et = EventTree(df)








  Classification        Group Difficulty   Response
0          Blast  Experienced       Easy      Blast
1      Non-blast  Experienced       Easy  Non-blast
2      Non-blast  Experienced       Hard      Blast
3      Non-blast  Experienced       Hard  Non-blast
4          Blast  Experienced       Easy      Blast









In order to display the EventTree, we can use the method create_figure(). The numbers above the edges of the event tree represent the number of individuals who passed through the given edge.



et.create_figure()








[image: ../_images/11d6dbfc9e521b5cd4ebc4bfef581bd3342905f2b16bf65ee009b7d950344653.png]






StagedTree Class

In an event tree, each situation is associated with a transition parameter vector which indicates the conditional
probability of an individual, who has arrived at the situation, going along one of its edges. In order to create a CEG, we first need to elicit a staged tree.
This is done by first partitioning situations into stages, which are collections of situations in the event tree whose immediate evolutions, i.e. their associated conditional transition parameter vectors, are equivalent. To indicate this symmetry, all situations in the same stage are assigned a single colour.

Identification of the stages in the event tree can be done using any suitable model selection algorithm. Currently, the only available selection algorithm in cegpy is the Agglomerative Hierarchical Clustering (AHC) algorithm (Freeman and Smith, 2011) [https://warwick.ac.uk/fac/sci/statistics/research/graphicalbayes/bayesian_map_model_selection_of_chain_event_graphs.pdf].

In order to create a staged tree in cegpy we first initialize a StagedTree object from the dataset and then run the AHC algorithm using the create_AHC_transitions method, as displayed below. The output of the AHC algorithm is a dictionary containing the following information:


	Merged Situations - a list of tuples representing the partition of the nodes into stages


	Log Likelihood - the log likelihood of the data under the model selected by AHC






from cegpy import StagedTree

st = StagedTree(df)
st.calculate_AHC_transitions()








{'Merged Situations': [('s2', 's1'),
  ('s20', 's18'),
  ('s12', 's10'),
  ('s7', 's3', 's6', 's8', 's4', 's5'),
  ('s9', 's11'),
  ('s17', 's19', 's16'),
  ('s0',),
  ('s13',),
  ('s14',),
  ('s15',)],
 'Log Likelihood': -30091.353114865367}









Within cegpy, singleton stages, i.e. stages containing a single situation, are coloured white, leaves and their corresponding sink node are coloured in light-grey. Running AHC on our data set results in the following staged tree.



st.create_figure()








[image: ../_images/06b024b289ece89bc51da4e7f0a53b4b94f2f4b09fdb464e9a642e47503cdf86.png]





Custom Hyperstages

cegpy allows the user to specify which situations are allowed to be merged by the AHC algorithm. This is done by specifying a hyperstage (Collazo et al., 2017) [http://wrap.warwick.ac.uk/91075/1/WRAP_Theses_Collazo_2017.pdf] which is a collection of sets such that two situations cannot be in the same stage unless they belong to the same set in the hyperstage. Under a default setting in cegpy, all situations which have the same number of outgoing edges and equivalent set of edge labels are in the same set within the hyperstage. The default hyperstages of a given tree can be displayed by accessing the hyperstage property, which returns a list of lists, where each sublist contains situations belonging to the same hyperstage.



st.hyperstage








[['s0',
  's9',
  's10',
  's11',
  's12',
  's13',
  's14',
  's15',
  's16',
  's17',
  's18',
  's19',
  's20'],
 ['s1', 's2'],
 ['s3', 's4', 's5', 's6', 's7', 's8']]









In this example, situations \(s_1\) and \(s_2\) belong to the same hyperstage. Each of them has three emanating edges with labels Experienced, Inexperienced, and Novice. However, stages \(s_6\) and \(s_15\) belong to different hyperstages. They both have two emanating edges, yet different labels: Easy, Hard and Blast, Non-blast.

We can specify a different hyperstage at the point of running the AHC algorithm by passing a list defining the hyperstage partition as a parameter to the calculate_AHC_transitions method, for example:



new_hyperstage = [
    ['s0'], 
    ['s3', 's4', 's5', 's6', 's7', 's8', 's9', 's10', 's11', 's12', 
    's13', 's14', 's15', 's16', 's17', 's18', 's19','s20'],
    ['s1', 's2'],
]
st.calculate_AHC_transitions(hyperstage=new_hyperstage)








{'Merged Situations': [('s2', 's1'),
  ('s20', 's18'),
  ('s12', 's10'),
  ('s7', 's3', 's6', 's8', 's4', 's5'),
  ('s9', 's11'),
  ('s17', 's19', 's16'),
  ('s0',),
  ('s13',),
  ('s14',),
  ('s15',)],
 'Log Likelihood': -30091.353114865367}











Structural and sampling zeros / missing values

The package, by default, treats all blank and NaN cells as structural missing values, i.e. data that is missing for a logical reason. However, sometimes these might occur due to sampling limitations; sampling missing values. We may also not observe a certain value for a variable in our data set (given its ancestral variables) not because that value is a structural zero but because of sampling limitations, in which case we are dealing with sampling zeros.

Consider the following example of the falls.xlsx data set which provides information concerning adults over the age of 65, and includes four categorical variables as given below with their state spaces:


	Housing Assessment: Living situation and whether they have been assessed, state space: {"Communal Assessed", "Communal Not Assessed", "Community Assessed", "Community Not Assessed"};


	Risk: Risk of a future fall, state space: {"High Risk", "Low Risk"};


	Treatment: Referral and treatment status, state space: {"Not Referred & Not Treated", "Not Referred & Treated", "Referred & Treated"};


	Fall: the outcome, state space: {"Fall", "Don’t Fall"}.






df = pd.read_excel('../../data/Falls_Data.xlsx')
df.head()
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Creating a Chain Event Graph


Example 1: Using a Stratified Dataset

This example builds a Chain Event Graph (CEG) from a discrete dataset showing results from a medical experiment. The dataset used is symmetrical, built from a rectangular dataset. These CEGs are known as stratified in the literature.

The Agglomerative Hierarchical Clustering (AHC) algorithm is used to maximise the log marginal likelihood score of the staged tree/CEG model to determine its stages. The package functions under a Bayesian framework and priors can be supplied to the AHC algorithm to override the default settings,

The example medical.xlsx dataset contains 4 categorical variables; Classification, Group, Difficulty, Response.

Each individual is given a binary classification; Blast or Non-blast. Each group is rated on their experience level; Experienced, Inexperienced, or Novice. The classification task they are given has a difficulty rating of Easy or Hard. Finally, their response is shown; Blast or Non-blast.

Firstly, a staged tree object is created from a data source, and calculate the AHC transitions.



from cegpy import StagedTree, ChainEventGraph
import pandas as pd

dataframe = pd.read_excel("medical.xlsx")
dataframe
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Reducing a Chain Event Graph

A complete CEG shows all possible trajectories that an individual undergoing the process might experience. However, on observing any evidence, certain or uncertain, some edges and nodes become unvisited with probability 1. The CEG model can be reduced such that these edges and nodes are excluded, without any loss of information. Once reduced, the probabilities displayed can be also be revised.

For this example, we will use the falls.xlsx dataset.



from cegpy import StagedTree, ChainEventGraph, ChainEventGraphReducer
import pandas as pd

dataframe = pd.read_excel("falls.xlsx")

staged_tree = StagedTree(dataframe)
staged_tree.calculate_AHC_transitions()

falls_ceg = ChainEventGraph(staged_tree)
falls_ceg.create_figure()








[image: ../_images/e94e83032fc47ff652e7cbd097f84ae38d00e0fefdbf9d6890d6862cf0b962e9.png]




When examining a dataset with a CEG, you may wish to see a subset of the graph, where some events are excluded with probability zero. Consider the CEG representation of the falls dataset; It may be interesting to split the graph into two graphs, one for individuals on the Communal paths, and another for people on the Community paths. This is achieved by using uncertain evidence. In our case, we know that anyone who is community assessed will have either passed along the Community Not Assessed edge or the Community Assessed edge, which can be done like so:



from cegpy import ChainEventGraphReducer

reducer = ChainEventGraphReducer(falls_ceg)
reducer.add_uncertain_edge_set(
    edge_set={
        ("w0", "w4", "Community Not Assessed"),
        ("w0", "w3", "Community Assessed"),
    }
)
print(reducer)








The evidence you have given is as follows:
 Evidence you are certain of:
   Edges = []
   Nodes = {}
 Evidence you are uncertain of:
   Edges = [
     {('w0', 'w4', 'Community Not Assessed'), ('w0', 'w3', 'Community Assessed')},
   ]
   Nodes = {
   }









The reduced graph is stored in the graph attribute, and is a ChainEventGraph object.



reducer.graph.create_figure()








[image: ../_images/f226b1f4458bfeed1b9400c76eb53e3168a76b5c859c3eb92ea61512f0c9a792.png]




Likewise, we can do the same for the Communal graph. In this case, it could be simpler to just specify the sub-graph which contains all paths that pass through nodes w1 and w2.



reducer = ChainEventGraphReducer(falls_ceg)
reducer.add_uncertain_node_set({"w1", "w2"})
reducer.graph.create_figure()








[image: ../_images/456d759c70baf1c2df9261e80b1234fab6ee25ff368fad0ab4b56582065c6eb9.png]




It may also be interesting to see the sub-graph of those Communal individuals who had a Fall.



reducer.add_uncertain_edge_set(
    {
        (u, v, l) 
        for (u, v, l) in reducer.graph.edges 
        if l == "Fall"
    }
)
print(reducer)








The evidence you have given is as follows:
 Evidence you are certain of:
   Edges = []
   Nodes = {}
 Evidence you are uncertain of:
   Edges = [
     {('w10', 'w_infinity', 'Fall'), ('w8', 'w_infinity', 'Fall'), ('w7', 'w_infinity', 'Fall'), ('w9', 'w_infinity', 'Fall')},
   ]
   Nodes = {
     {'w2', 'w1'},
   }









The probabilities are adjusted across all the edges, and back propagated through the graph automatically.



reducer.graph.create_figure()








[image: ../_images/4f1501ff353edc538021d5b174e67e36be9c83d17f20d0d7893dcd2df864dabf.png]




When you would like to adjust the graph to only show paths which pass through a specific edge or node, certain evidence is used.

Take the following example. You’d like to see what might have happened to an individual who was Communal Assessed. This can be done by using the add_certain_edge method.



reducer.clear_all_evidence()

reducer.add_certain_edge("w0", "w1", "Communal Assessed")
# or reducer.add_certain_node("w1")
reducer.graph.create_figure()








[image: ../_images/d2ced0654095bdd28a701841ea908e71b8d0110c28227d5c9593c308eda0569c.png]
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How to make visual changes to the graphs?


Changing the colour palette

By default, the colours of the nodes in cegpy are selected uniformly at random from the entire spectrum of colours. If we want to use a specific colour palette, a list of colours to be used by the AHC algorithm can be specified as a parameter when calling the create_AHC_transitions method, for example:



from cegpy import StagedTree, ChainEventGraph
import pandas as pd

df = pd.read_excel('../../data/medical_dm_modified.xlsx')

st = StagedTree(df)
colours = ['#BBCC33','#77AADD','#EE8866','#EEDD88','#FFAABB','#44BB99']
st.calculate_AHC_transitions(colour_list=colours)
ceg = ChainEventGraph(st)
ceg.create_figure()








[image: ../_images/15d48cd6c006cb009d8716e861d95f7c28c11bfa61640a9fac97aeb74ed7de97.png]






Modifying graph, node, and edge attributes

The graphs in cegpy are built with GraphViz and PyDotPlus. We can access the underlying pydotplus.graphviz.Dot object by accessing the dot_graph property. This enables visual modifications of our event tree, staged tree, or CEG. For example, the following code modifies the distance between the nodes, changes the style of each edge labelled "Hard" from solid to dashed, and changes the shape of the root node from oval to square.



from IPython.display import Image

g = ceg.dot_graph()
g.set('ranksep', 0.1)
g.set('nodesep', 0.2)

for edge in g.get_edge_list():
    if "Hard" in edge.get("label"):
        edge.set_style('dashed')

g.get_node('w0')[-1].set_shape('square')

Image(g.create_png())








[image: ../_images/5a5cf132473b80c594cc4ef92531d50cba8bbab974e2e0adaf4ec4c5d8df996e.png]




For more information about the available graph, node, and edge attributes refer to the GraphViz [https://graphviz.org] and PyDotPlus [https://pydotplus.readthedocs.io] documentation.
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EventTree


	
class cegpy.EventTree(dataframe: DataFrame, sampling_zero_paths=None, var_order=None, struct_missing_label=None, missing_label=None, complete_case=False)

	Bases: MultiDiGraph

This class extends the NetworkX MultiDiGraph class to allow the creation
of event tree representations of data.


	Parameters:

	
	dataframe (pandas.DataFrame) – Required - DataFrame containing variables as column headers,
with event name strings in each cell. These event names will be used to
create the edges of the event tree. Counts of each event will
be extracted and attached to each edge.


	sampling_zero_paths (List[Tuple[str]] or None) – Optional - Paths to sampling
zeros.

Format is as follows: [(‘edge_1’,), (‘edge_1’, ‘edge_2’), …]

If no paths are specified, default setting is that no sampling zero paths
are created.




	var_order (List[str] or None) – Optional - Specifies the ordering of variables to be adopted
in the event tree.
Default var_order is obtained from the order of columns in dataframe.
String labels in the list should match the column names in dataframe.


	struct_missing_label (str or None) – Optional - Label in the dataframe for observations
which are structurally missing; e.g: Post operative health status is
irrelevant for a dead patient.
Label example: “struct”.


	missing_label (str or None) – Optional - Label in the dataframe for observations which are
missing values that are not structurally missing.
e.g: Missing height for some individuals in the sample.
Label example: “miss”
Whatever label is provided will be renamed in the event tree to “missing”.


	complete_case (bool) – Optional - If True, all entries (rows) with non-structural
missing values are removed. Default setting: False.









	
property root: str

	
	Returns:

	The name of the root node of the event tree, currently hard coded to ‘s0’.



	Return type:

	str










	
property variables: List

	
	Returns:

	The column headers of the dataset.



	Return type:

	List[str]










	
property sampling_zeros: Optional[List[Tuple[str]]]

	Setting this property will apply sampling zero paths to the tree.
If different to previous value, the event tree will be regenerated.


	Returns:

	Sampling zero paths provided by the user.



	Return type:

	List[Tuple[str]] or None










	
property situations: List[str]

	
	Returns:

	The situations of the tree (non-leaf nodes).



	Return type:

	List[str]










	
property leaves: List[str]

	
	Returns:

	The leaves of the tree.



	Return type:

	List[str]










	
property edge_counts: Dict

	The counts along edges all edges in the tree, where edges are a
Tuple like so: (“source_node”, “destination_node”, “edge_label”).


	Returns:

	A mapping of edges to their counts.



	Return type:

	Dict[Tuple[str], Int]










	
property categories_per_variable: Dict

	The number of unique categories/levels for each variable
(column headings in dataframe).


	Returns:

	A mapping of variables to the number of unique categories/levels.



	Return type:

	Dict[str, Int]










	
dot_graph(edge_info: str = 'count') → Dot

	Returns Dot graph representation of the event tree.
:param edge_info: Optional - Chooses which summary measure to be displayed on edges.
In event trees, only “count” can be displayed, so this can be omitted.


	Returns:

	A graphviz Dot representation of the graph.



	Return type:

	pydotplus.Dot










	
create_figure(filename=None, edge_info: str = 'count') → Optional[Image]

	Creates event tree from the dataframe.


	Parameters:

	
	filename (str) – Optional - When provided, file is saved to the filename,
local to the current working directory.
e.g. if filename = “output/event_tree.svg”, the file will be saved to:
cwd/output/event_tree.svg
Otherwise, if function is called inside an interactive notebook, image
will be displayed in the notebook, even if filename is omitted.
Supports any filetype that graphviz supports. e.g: “event_tree.png” or
“event_tree.svg” etc.


	edge_info (str) – Optional - Chooses which summary measure to be displayed on edges.
In event trees, only “count” can be displayed, so this can be omitted.






	Returns:

	The event tree Image object.



	Return type:

	IPython.display.Image or None
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StagedTree


	
class cegpy.StagedTree(dataframe, sampling_zero_paths=None, var_order=None, struct_missing_label=None, missing_label=None, complete_case=False)

	Bases: EventTree

Representation of a Staged Tree.

A staged tree is a tree where each node is a situation, and each edge is a
transition from one situation to another. Each situation is given a ‘stage’
which groups it with other situations which have the same outgoing edges,
with equivalent probabilities of occurring.

The class is an extension of EventTree.


	Parameters:

	
	dataframe (pandas.DataFrame) – Required - DataFrame containing variables as column headers,
with event name strings in each cell. These event names will be used to
create the edges of the event tree. Counts of each event will
be extracted and attached to each edge.


	sampling_zero_paths (List[Tuple[str]] or None) – Optional - Paths to sampling
zeros.

Format is as follows: [(‘edge_1’,), (‘edge_1’, ‘edge_2’), …]

If no paths are specified, default setting is that no sampling zero paths
are created.




	var_order (List[str] or None) – Optional - Specifies the ordering of variables to be adopted
in the event tree.
Default var_order is obtained from the order of columns in dataframe.
String labels in the list should match the column names in dataframe.


	struct_missing_label (str or None) – Optional - Label in the dataframe for observations
which are structurally missing; e.g: Post operative health status is
irrelevant for a dead patient.
Label example: “struct”.


	missing_label (str or None) – Optional - Label in the dataframe for observations which are
missing values that are not structurally missing.
e.g: Missing height for some individuals in the sample.
Label example: “miss”
Whatever label is provided will be renamed in the event tree to “missing”.


	complete_case (bool) – Optional - If True, all entries (rows) with non-structural
missing values are removed. Default setting: False.









	
property prior: Dict[Tuple[str], List[Fraction]]

	A mapping of priors keyed by edge. Keys are
3-tuples of the form: (src, dst, edge_label).


	Returns:

	A mapping edge -> priors.



	Return type:

	Dict[Tuple[str], List[Fraction]]










	
property prior_list: List[List[Fraction]]

	
	Returns:

	Priors in the form of a list of lists.



	Return type:

	List[List[Fraction]]










	
property posterior: Dict[Tuple[str], List[Fraction]]

	Posteriors along each edge, calculated by adding edge count to the prior for
each edge.
Keys are 3-tuples of the form: (src, dst, edge_label).


	Returns:

	Mapping of edge -> edge_count + prior



	Return type:

	Dict[Tuple[str], List[Fraction]]










	
property posterior_list: List[List[Fraction]]

	
	Returns:

	Posteriors in the form of a list of lists.



	Return type:

	List[List[Fraction]]










	
property alpha: float

	The equivalent sample size set for the root node which is then uniformly
propagated through the tree.


	Returns:

	The value of Alpha.



	Return type:

	float










	
property hyperstage: List[List[str]]

	Indication of which nodes are allowed to be in the same stage. Each
list is a list of node names e.g. “s0”.


	Returns:

	The List of all hyperstages.



	Return type:

	List[List[str]]










	
property edge_countset: List[List]

	Indexed the same as situations.
:return: Edge counts emination from each node of the tree.
:rtype: List[List]






	
property ahc_output: Dict

	Contains a List of Lists containing all the situations that were merged,
and the log likelihood.


	Returns:

	The output from the AHC algorithm.



	Return type:

	Dict










	
calculate_AHC_transitions(prior=None, alpha=None, hyperstage=None, colour_list=None) → Dict

	Bayesian Agglommerative Hierarchical Clustering algorithm
implementation. It returns a list of lists of the situations which
have been merged together, the likelihood of the final model.


	Parameters:

	
	prior (Dict[Tuple[str], List[Fraction]]) – Optional - A mapping of priors keyed by edge. Keys are
3-tuples of the form: (src, dst, edge_label).


	alpha (float) – Optional - The equivalent sample size set for the root node
which is then uniformly propagated through the tree.


	hyperstage (List[List[str]]) – Optional - Indication of which nodes are allowed to be
in the same stage. Each list is a list of node names e.g. “s0”.


	colour_list (List[str]) – Optional - a list of hex colours to be used for stages.
Otherwise, colours evenly spaced around the colour spectrum are used.






	Returns:

	The output from the AHC algorithm, specified above.



	Return type:

	Dict










	
dot_graph(edge_info: str = 'count', staged: bool = True)

	Returns Dot graph representation of the staged tree.


	Parameters:

	
	edge_info (str) – Optional - Chooses which summary measure to be displayed on edges. Defaults to “count”. Options: [“count”, “prior”, “posterior”, “probability”]


	staged (bool) – if True, returns the coloured staged tree,
if False, returns the underlying event tree.






	Returns:

	A graphviz Dot representation of the graph.



	Return type:

	pydotplus.Dot










	
create_figure(filename: Optional[str] = None, edge_info: str = 'count', staged: bool = True) → Optional[Image]

	Draws the coloured staged tree or the underlying event tree
for the process described by the dataset.


	Parameters:

	
	filename (str) – Optional - When provided, file is saved to the filename,
local to the current working directory.
e.g. if filename = “output/event_tree.svg”, the file will be saved to:
cwd/output/staged_tree.svg
Otherwise, if function is called inside an interactive notebook, image
will be displayed in the notebook, even if filename is omitted.

Supports any filetype that graphviz supports. e.g: “staged_tree.png” or
“staged_tree.svg” etc.




	edge_info (str) – Optional - Chooses which summary measure to be displayed on edges.
In event trees, only “count” can be displayed, so this can be omitted.


	staged (bool) – if True, returns the coloured staged tree,
if False, returns the underlying event tree.






	Returns:

	The event tree Image object.



	Return type:

	IPython.display.Image or None
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ChainEventGraph


	
class cegpy.ChainEventGraph(staged_tree: Optional[StagedTree] = None, node_prefix: str = 'w', generate: bool = True)

	Bases: MultiDiGraph

Representation of a Chain Event Graph.

A Chain Event Graph reduces a staged tree.

The class is an extension of NetworkX MultiDiGraph.


	Parameters:

	
	staged_tree (StagedTree) – A staged tree object where the stages have been calculated.


	node_prefix (str) – The prefix that is used for the nodes in the Chain Event Graph.
Default = “w”


	generate (bool) – Automatically generate the Chain Event Graph upon creation of the
object. Default = True.









	
property sink: str

	
	Returns:

	Sink node name



	Return type:

	str










	
property root: str

	
	Returns:

	Root node name



	Return type:

	str










	
property stages: Mapping[str, Set[str]]

	
	Returns:

	Mapping of stages to constituent nodes.



	Return type:

	Mapping[str, Set[str]]










	
property path_list: List[List[Tuple[str]]]

	
	Returns:

	All the paths through the CEG, as a list of lists of edge tuples.



	Return type:

	List[List[Tuple[str]]]










	
generate() → None

	Identifies the positions i.e. the nodes of the CEG and the edges of the CEG
along with their edge labels and edge counts. Here we use the
algorithm from our paper with the optimal stopping time.






	
dot_graph(edge_info: str = 'probability') → Dot

	Returns Dot graph representation of the CEG.
:param edge_info: Optional - Chooses which summary measure to be displayed
on edges. Defaults to “count”.
Options: [“count”, “prior”, “posterior”, “probability”]


	Returns:

	A graphviz Dot representation of the graph.



	Return type:

	pydotplus.Dot










	
create_figure(filename=None, edge_info: str = 'probability') → Optional[Image]

	Draws the coloured chain event graph for the staged_tree.


	Parameters:

	
	filename (str) – Optional - When provided, file is saved to the filename,
local to the current working directory.
e.g. if filename = “output/ceg.svg”, the file will be saved to:
cwd/output/ceg.svg
Otherwise, if function is called inside an interactive notebook, image
will be displayed in the notebook, even if filename is omitted.

Supports any filetype that graphviz supports. e.g: “ceg.png” or
“ceg.svg” etc.




	edge_info (str) – Optional - Chooses which summary measure to be displayed on
edges. Value can take: “count”, “prior”, “posterior”, “probability”






	Returns:

	The event tree Image object.



	Return type:

	IPython.display.Image or None
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ChainEventGraphReducer


	
class cegpy.ChainEventGraphReducer(ceg: ChainEventGraph)

	Bases: object

Reduces Chain Event Graphs given certain and/or uncertain evidence.


	Parameters:

	ceg (ChainEventGraph) – Chain event graph object to reduce.






	
property certain_edges: List[Tuple[str]]

	
	Returns:

	A list of all edges of the ChainEventGraph that have been observed.





certain_edges is a list of edge tuples of the form:
[edge_1, edge_2, … edge_n]

Each edge tuple takes the form:
(“source_node_name”, “destination_node_name”, “edge_label”)






	
property uncertain_edges: List[Tuple[str]]

	
	Returns:

	A list of sets of edges of the ChainEventGraph which might have occurred.





uncertain_edges is a list of sets of edge tuples of the form:
[{(a, b, label), (a, c, label)}, {(x, y, label), (x, z, label)}]

Each edge tuple takes the form:
(“source_node_name”, “destination_node_name”, “edge_label”)






	
property certain_nodes: Set[str]

	
	Returns:

	A set of all nodes of the ChainEventGraph that have been observed.





certain_nodes is a set of nodes of the form:
{“node_1”, “node_2”, “node_3”, … “node_n”}






	
property uncertain_nodes: List[Set[str]]

	
	Returns:

	A list of sets of nodes of the ChainEventGraph where there is uncertainty which of the nodes in each set happened.





uncertain_nodes is a list of sets of nodes of the form:
[{“node_1”, “node_2”}, {“node_3”, “node_4”}, …]






	
property paths: List[List[Tuple[str]]]

	
	Returns:

	A list of all paths through the reduced ChainEventGraph.










	
property graph: ChainEventGraph

	
	Returns:

	The reduced graph once all evidence has been taken into account.



	Return type:

	ChainEventGraph










	
clear_all_evidence() → None

	Resets the evidence provided.






	
add_certain_edge(src: str, dst: str, label: str) → None

	Specify an edge that has been observed.


	Parameters:

	
	src (str) – Edge source node label


	dst (str) – Edge destination node label


	label (str) – Label of certain edge













	
remove_certain_edge(src: str, dst: str, label: str) → None

	Specify an edge to remove from the certain edges.


	Parameters:

	
	src (str) – Edge source node label


	dst (str) – Edge destination node label


	label (str) – Label of certain edge













	
add_certain_edge_list(edges: List[Tuple[str]]) → None

	Specify a list of edges that have all been observed.


	Parameters:

	edges (List[Tuple[str]]) – List of edge tuples of the form (“src”, “dst”, “label”)










	
remove_certain_edge_list(edges: List[Tuple[str]]) → None

	Specify a list of edges that in the certain edge list
to remove.


	Parameters:

	edges (List[Tuple[str]]) – List of edge tuples of the form (“src”, “dst”, “label”)










	
add_uncertain_edge_set(edge_set: Set[Tuple[str]]) → None

	Specify a set of edges where one of the edges has
occurred, but you are uncertain of which one it is.


	Parameters:

	edge_set (Set[Tuple[str]]) – Set of edge tuples of the form (“src”, “dst”, “label”)










	
remove_uncertain_edge_set(edge_set: Set[Tuple[str]]) → None

	Specify a set of edges to remove from the uncertain edges.


	Parameters:

	edge_set (Set[Tuple[str]]) – Set of edge tuples of the form (“src”, “dst”, “label”)










	
add_uncertain_edge_set_list(edge_sets: List[Set[Tuple[str]]]) → None

	Specify a list of sets of edges where one of the edges has
occurred, but you are uncertain of which one it is.


	Parameters:

	edge_set (List[Set[Tuple[str]]]) – List of sets of edge tuples of the form (“src”, “dst”, “label”)










	
remove_uncertain_edge_set_list(edge_sets: List[Set[Tuple[str]]]) → None

	Specify a list of sets of edges to remove from the evidence list.


	Parameters:

	edge_set (List[Set[Tuple[str]]]) – List of sets of edge tuples of the form (“src”, “dst”, “label”)










	
add_certain_node(node: str) → None

	Specify a node in the graph that has been observed.


	Parameters:

	node (str) – A node label e.g. “w4”










	
remove_certain_node(node: str) → None

	Specify a node to be removed from the certain nodes list.


	Parameters:

	node (str) – A node label e.g. “w4”










	
add_certain_node_set(nodes: Set[str]) → None

	Specify a set of nodes that have been observed.


	Parameters:

	nodes (Set[str]) – A set of node labels e.g. {“w4”, “w8”}










	
remove_certain_node_set(nodes: Set[str]) → None

	Specify a list of nodes to remove from the list of nodes that have
been observed.


	Parameters:

	nodes (Set[str]) – A set of node labels e.g. {“w4”, “w8”}










	
add_uncertain_node_set(node_set: Set[str]) → None

	Specify a set of nodes where one of the nodes has
occurred, but you are uncertain of which one it is.


	Parameters:

	nodes (Set[str]) – A set of node labels e.g. {“w4”, “w8”}










	
remove_uncertain_node_set(node_set: Set[str]) → None

	Specify a set of nodes to be removed from the uncertain
nodes set list.


	Parameters:

	nodes (Set[str]) – A set of node labels e.g. {“w4”, “w8”}










	
add_uncertain_node_set_list(node_sets: List[Set[str]]) → None

	Specify a list of sets of nodes where in each set, one of
the nodes has occurred, but you are uncertain of which one it is.


	Parameters:

	nodes (List[Set[str]]) – A collection of sets of uncertain nodes.










	
remove_uncertain_node_set_list(node_sets: List[Set[str]]) → None

	Specify a list of sets nodes to remove from the list of uncertain
sets of nodes.


	Parameters:

	nodes (List[Set[str]]) – A collection of sets of uncertain nodes.
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