
Python

Gareth Walley and Aditi Shenvi

Mar 05, 2023

CONTENTS

I Quick Start 3
1 Creation of a Staged Tree 5

1.1 EventTree Class . 5
1.2 StagedTree Class . 7

2 Creating a Chain Event Graph 17
2.1 Example 1: Using a Stratified Dataset . 17
2.2 Example 2: Chain Event Graph from Non-Stratified Dataset . 19

3 Reducing a Chain Event Graph 23

4 How to make visual changes to the graphs? 27
4.1 Changing the colour palette . 27
4.2 Modifying graph, node, and edge attributes . 28

II API 31
5 EventTree 33

6 StagedTree 37

7 ChainEventGraph 41

8 ChainEventGraphReducer 43

Python Module Index 47

Index 49

i

ii

Python

Cegpy (/segpaɪ/) is a Python package for working with Chain Event Graphs (CEG). It supports learning the graphical
structure of a Chain Event Graph from data, encoding of parametric and structural priors, estimating its parameters, and
performing inference.
It is built on top of the Python network modelling package NetworkX.

Why use cegpy?

CEGs are a flexible family of graphical models that are suitable for exploratory analysis of processes with asymmetries.
This is the first python package for modelling with CEGs. It can handle processes exhibiting context-specific conditional
independence relationships and/or structural asymmetries.
It is built with extensibility in mind and is open-source, so new models built on top of CEGs can be built on top of it, and
be included into the package. Our aim is to enable researchers to work with CEGs without having to start from scratch.
As such, contributions are welcome!

Installation

To use cegpy, first install it using pip:

$ pip install cegpy

The package is hosted on PyPi!

Table of Contents

• Quick Start
– Creation of a Staged Tree

– Creating a Chain Event Graph

– Reducing a Chain Event Graph

– How to make visual changes to the graphs?

• API
– EventTree

– StagedTree

– ChainEventGraph

– ChainEventGraphReducer

CONTENTS 1

https://pypi.org/project/cegpy/

Python

2 CONTENTS

Part I

Quick Start

3

CHAPTER

ONE

CREATION OF A STAGED TREE

1.1 EventTree Class

The first starting point in constructing a Chain Event Graph (CEG) is to create an event tree describing the process being
studied. An event tree is a directed tree graph with a single root node. The nodes with no emanating edges are called
leaves, and the non-leaf nodes are called situations.
In this example we work with a data set which contains 4 categorical variables; Classification, Group, Difficulty, and
Response.
Each individual is given a binary classification; Blast or Non-blast. Each group is rated on their experience level: Expe-
rienced, Inexperienced, or Novice. The classification task they are given has a difficulty rating of Easy or Hard. Finally,
their response is shown: Blast or Non-blast.
We begin by importing the data set and initializing the EventTree object, as shown below:

from cegpy import EventTree
import pandas as pd

df = pd.read_excel('../../data/medical_dm_modified.xlsx')
print(df.head())

#initialize the event tree
et = EventTree(df)

Classification Group Difficulty Response
0 Blast Experienced Easy Blast
1 Non-blast Experienced Easy Non-blast
2 Non-blast Experienced Hard Blast
3 Non-blast Experienced Hard Non-blast
4 Blast Experienced Easy Blast

In order to display the EventTree, we can use the method create_figure(). The numbers above the edges of the
event tree represent the number of individuals who passed through the given edge.

et.create_figure()

5

Python

6 Chapter 1. Creation of a Staged Tree

Python

1.2 StagedTree Class

In an event tree, each situation is associated with a transition parameter vector which indicates the conditional probability
of an individual, who has arrived at the situation, going along one of its edges. In order to create a CEG, we first need
to elicit a staged tree. This is done by first partitioning situations into stages, which are collections of situations in the
event tree whose immediate evolutions, i.e. their associated conditional transition parameter vectors, are equivalent. To
indicate this symmetry, all situations in the same stage are assigned a single colour.
Identification of the stages in the event tree can be done using any suitable model selection algorithm. Currently, the
only available selection algorithm in cegpy is the Agglomerative Hierarchical Clustering (AHC) algorithm (Freeman and
Smith, 2011).
In order to create a staged tree in cegpywe first initialize a StagedTree object from the dataset and then run the AHC
algorithm using the create_AHC_transitions method, as displayed below. The output of the AHC algorithm is
a dictionary containing the following information:

• Merged Situations - a list of tuples representing the partition of the nodes into stages
• Log Likelihood - the log likelihood of the data under the model selected by AHC

from cegpy import StagedTree

st = StagedTree(df)
st.calculate_AHC_transitions()

{'Merged Situations': [('s2', 's1'),
('s20', 's18'),
('s12', 's10'),
('s8', 's4', 's7', 's6', 's3', 's5'),
('s11', 's9'),
('s16', 's17', 's19'),
('s0',),
('s13',),
('s14',),
('s15',)],

'Log Likelihood': -30091.353114865367}

Within cegpy, singleton stages, i.e. stages containing a single situation, are coloured white, leaves and their correspond-
ing sink node are coloured in light-grey. Running AHC on our data set results in the following staged tree.

st.create_figure()

1.2. StagedTree Class 7

https://warwick.ac.uk/fac/sci/statistics/research/graphicalbayes/bayesian_map_model_selection_of_chain_event_graphs.pdf
https://warwick.ac.uk/fac/sci/statistics/research/graphicalbayes/bayesian_map_model_selection_of_chain_event_graphs.pdf

Python

8 Chapter 1. Creation of a Staged Tree

Python

1.2.1 Custom Hyperstages

cegpy allows the user to specify which situations are allowed to be merged by the AHC algorithm. This is done by
specifying a hyperstage (Collazo et al., 2017) which is a collection of sets such that two situations cannot be in the same
stage unless they belong to the same set in the hyperstage. Under a default setting in cegpy, all situations which have the
same number of outgoing edges and equivalent set of edge labels are in the same set within the hyperstage. The default
hyperstages of a given tree can be displayed by accessing the hyperstage property, which returns a list of lists, where
each sublist contains situations belonging to the same hyperstage.

st.hyperstage

[['s0',
's9',
's10',
's11',
's12',
's13',
's14',
's15',
's16',
's17',
's18',
's19',
's20'],

['s1', 's2'],
['s3', 's4', 's5', 's6', 's7', 's8']]

In this example, situations 𝑠1 and 𝑠2 belong to the same hyperstage. Each of them has three emanating edges with labels
Experienced, Inexperienced, and Novice. However, stages 𝑠6 and 𝑠15 belong to different hyperstages. They both have two
emanating edges, yet different labels: Easy, Hard and Blast, Non-blast.
We can specify a different hyperstage at the point of running the AHC algorithm by passing a list defining the hyperstage
partition as a parameter to the calculate_AHC_transitions method, for example:

new_hyperstage = [
['s0'],
['s3', 's4', 's5', 's6', 's7', 's8', 's9', 's10', 's11', 's12',
's13', 's14', 's15', 's16', 's17', 's18', 's19','s20'],
['s1', 's2'],

]
st.calculate_AHC_transitions(hyperstage=new_hyperstage)

{'Merged Situations': [('s2', 's1'),
('s20', 's18'),
('s12', 's10'),
('s8', 's4', 's7', 's6', 's3', 's5'),
('s11', 's9'),
('s16', 's17', 's19'),
('s0',),
('s13',),
('s14',),
('s15',)],

'Log Likelihood': -30091.353114865367}

1.2. StagedTree Class 9

http://wrap.warwick.ac.uk/91075/1/WRAP_Theses_Collazo_2017.pdf

Python

1.2.2 Structural and sampling zeros / missing values

The package, by default, treats all blank and NaN cells as structural missing values, i.e. data that is missing for a logical
reason. However, sometimes these might occur due to sampling limitations; sampling missing values. We may also not
observe a certain value for a variable in our data set (given its ancestral variables) not because that value is a structural
zero but because of sampling limitations, in which case we are dealing with sampling zeros.
Consider the following example of the falls.xlsx data set which provides information concerning adults over the age
of 65, and includes four categorical variables as given below with their state spaces:

• Housing Assessment: Living situation and whether they have been assessed, state space: {"Communal
Assessed", "Communal Not Assessed", "Community Assessed", "Community Not
Assessed"};

• Risk: Risk of a future fall, state space: {"High Risk", "Low Risk"};
• Treatment: Referral and treatment status, state space: {"Not Referred & Not Treated", "Not
Referred & Treated", "Referred & Treated"};

• Fall: the outcome, state space: {"Fall", "Don’t Fall"}.

df = pd.read_excel('../../data/Falls_Data.xlsx')
df.head()

HousingAssessment Risk Treatment Fall
0 Community Not Assessed Low Risk NaN Fall
1 Community Not Assessed High Risk NaN Fall
2 Community Not Assessed Low Risk NaN Don't Fall
3 Community Not Assessed Low Risk NaN Don't Fall
4 Community Not Assessed Low Risk NaN Fall

et = EventTree(df)
et.create_figure()

10 Chapter 1. Creation of a Staged Tree

Python

1.2. StagedTree Class 11

Python

Observe that this process has structural asymmetries. None of the individuals assessed to be low risk are referred to the
falls clinic and thus, for this group, the count associated with the _Referred & Treated’}$ category is a structural zero:

df[df.Risk == "Low Risk"]['Treatment'].value_counts()

Not Referred & Not Treated 1396
Not Referred & Treated 170
Name: Treatment, dtype: int64

Moreover, for individuals who are not assessed, their responses are structurally missing for the Treatment variable:

Missing values in each column
print(df.isna().sum())

Missing values for Treatment are structural,
they are missing due to the lack of assessment:
df[df.HousingAssessment.isin([

'Community Not Assessed', 'Communal Not Assessed'
])]['Treatment'].isna().sum()

HousingAssessment 0
Risk 0
Treatment 46750
Fall 0
dtype: int64

46750

In cegpy any paths that should logically be in the event tree description of the process but are absent from the dataset
due to sampling limitations would need to be manually added by the user using the sampling zero paths argument when
initialising the EventTree object. Further, not all missing values in the dataset will be structurally missing.

How to distinguish between structural and sampling missing values?

e.g. Falls example: Suppose that some individuals in communal establishments who are not formally assessed but are
known to be high risk were actually either "Not Referred & Treated" or "Not Referred & Not
Treated" but that these observations were missing in the falls.xlsx dataset due to sampling limitations. All
the other blank/NaN cells are structurally missing.

idx = (df.HousingAssessment == 'Communal Not Assessed') & (df.Risk == 'High Risk')
df[idx]

HousingAssessment Risk Treatment Fall
67 Communal Not Assessed High Risk NaN Fall
72 Communal Not Assessed High Risk NaN Fall
95 Communal Not Assessed High Risk NaN Fall
102 Communal Not Assessed High Risk NaN Fall
132 Communal Not Assessed High Risk NaN Fall
...
49065 Communal Not Assessed High Risk NaN Fall
49087 Communal Not Assessed High Risk NaN Fall
49135 Communal Not Assessed High Risk NaN Don't Fall

(continues on next page)

12 Chapter 1. Creation of a Staged Tree

Python

(continued from previous page)

49461 Communal Not Assessed High Risk NaN Fall
49905 Communal Not Assessed High Risk NaN Fall

[436 rows x 4 columns]

To demarcate the difference between structural and sampling missing values, a user can give different labels to the
structural and sampling missing values in the dataset and provide these labels to the struct_missing_label and
missing_label arguments respectively when initialising the EventTree or StagedTree object.
In our example, we can replace the NaN values for the Treatment variable among the considered subset of data with
a new label, e.g. samp_miss:

df.loc[idx, 'Treatment'] = 'samp_miss'

Next step is to tell the EventTree or StagedTree object about these missing value arguments as shown below. This
will generate a new path along Communal Not Assessed', High Risk’, `missing’)}$:

et2 = EventTree(df,
missing_label='samp_miss',

)
et2.create_figure()

1.2. StagedTree Class 13

Python

14 Chapter 1. Creation of a Staged Tree

Python

How to add sampling zeros?

e.g. Falls example: Suppose that some individuals in the community who were assessed and high risk were referred
and not treated. Suppose that our observations are still the same as in the falls.xlsx dataset. Here, by design, this
was allowed, but was not observed in the dataset. So we need to add this value in manually as a path ("Community
Assessed", "High Risk", "Referred & Not Treated"). We also need to add in the values that follow
it: i.e. ("Community Assessed", "High Risk", "Referred & Not Treated", "Fall") and
("Community Assessed", "High Risk", "Referred & Not Treated", "Don't Fall").
In cegpy any paths that should logically be in the event tree description of the process but are absent from the dataset
due to sampling limitations would need to be manually added by the user using the sampling zero paths argument when
initialising the EventTree or StagedTree object. No changes need to be made to the dataset, as shown below:

st2 = StagedTree(df,
sampling_zero_paths=[

('Community Assessed', 'High Risk', 'Referred & Not Treated'),
('Community Assessed', 'High Risk', 'Referred & Not Treated', 'Fall'),
('Community Assessed', 'High Risk', 'Referred & Not Treated', "Don't Fall")

])
st2.calculate_AHC_transitions()
st2.create_figure()

1.2. StagedTree Class 15

Python

16 Chapter 1. Creation of a Staged Tree

CHAPTER

TWO

CREATING A CHAIN EVENT GRAPH

2.1 Example 1: Using a Stratified Dataset

This example builds a Chain Event Graph (CEG) from a discrete dataset showing results from a medical experiment.
The dataset used is symmetrical, built from a rectangular dataset. These CEGs are known as stratified in the literature.
The Agglomerative Hierarchical Clustering (AHC) algorithm is used to maximise the log marginal likelihood score of
the staged tree/CEG model to determine its stages. The package functions under a Bayesian framework and priors can be
supplied to the AHC algorithm to override the default settings,
The example medical.xlsx dataset contains 4 categorical variables; Classification, Group, Difficulty,
Response.
Each individual is given a binary classification; Blast or Non-blast. Each group is rated on their experience level;
Experienced, Inexperienced, or Novice. The classification task they are given has a difficulty rating of Easy
or Hard. Finally, their response is shown; Blast or Non-blast.
Firstly, a staged tree object is created from a data source, and calculate the AHC transitions.

from cegpy import StagedTree, ChainEventGraph
import pandas as pd

dataframe = pd.read_excel("medical.xlsx")
dataframe

Classification Group Difficulty Response
0 Blast Experienced Easy Blast
1 Non-blast Experienced Easy Non-blast
2 Non-blast Experienced Hard Blast
3 Non-blast Experienced Hard Non-blast
4 Blast Experienced Easy Blast
...
10979 Blast Novice Easy Non-blast
10980 Blast Novice Easy Blast
10981 Non-blast Novice Easy Blast
10982 Blast Novice Easy Non-blast
10983 Non-blast Novice Hard Non-blast

[10984 rows x 4 columns]

Descriptive statistics for the dataset
dataframe.describe()

17

Python

Classification Group Difficulty Response
count 10984 10984 10984 10984
unique 2 3 2 2
top Non-blast Novice Easy Blast
freq 5493 7389 5494 5863

The AHC algorithm is executed on the event tree, and the nodes are assigned a colour if they are found to be in the same
stage as each other. Note that the calculate_AHC_transitionsmethod is only available from the StagedTree
class and not the EventTree class.
Effectively, nodes in the same stage share the same parameter set; in other words, the immediate future of these nodes
is identical. Note that singleton stages are not coloured in the staged tree and its corresponding CEG to prevent visual
cluttering.
When the CEG is created, equivalent nodes (precisely, those whose complete future is identical) in a stage will be com-
bined to compress the graph.

staged_tree = StagedTree(dataframe)
staged_tree.calculate_AHC_transitions();

Once the AHC algorithm has been run to identify the stages, a CEG can be created by passing the StagedTree object
into the ChainEventGraph class. When the ChainEventGraph is created, it automatically generates the CEG from
the StagedTree object. The process of generation compares nodes that are in the same stage to determine if they are
logically compatible with one another. Once the graph has been constructed, and nodes combined, the probabilities of
passing down any given edge are displayed.
Like the StagedTree, the graph can be displayed using the create_figure method as shown below.

from IPython.display import Image

chain_event_graph = ChainEventGraph(staged_tree)
chain_event_graph.create_figure()

18 Chapter 2. Creating a Chain Event Graph

Python

The tree has now been compressed into a Chain Event Graph. The graph represents the system encoded in the data. All
paths start at the root node w0, (which represents an individual entering the system), and terminate at the sink node w∞
(which represents the point at which an individual exits the system).

2.2 Example 2: Chain Event Graph from Non-Stratified Dataset

This example builds a Chain Event Graph (CEG) from a asymmetric dataset. In simple words, a dataset is asymmetric
when the event tree describing the dataset is not symmetric around its root. The class of CEGs built from asymmetric
event trees is said to be non-stratified. Note that, technically, a CEG is also said to be non-stratified when the order of
events along its different paths is not the same, even though its event tree might be symmetric. Whilst such processes
can also be easily modelled with the cegpy package, for this example we focus on non-stratified CEGs that are built from
asymmetric event trees/datasets.
Asymmetry in a dataset arises when it has structural zeros or structural missing values in certain rows; in other words, the
sample space of a variable is different or empty respectively, depending on its ancestral variables. So logically, certain
values of the variable will never be observed for certain configurations of its ancestral variables, irrespective of the sample
size.

2.2. Example 2: Chain Event Graph from Non-Stratified Dataset 19

Python

In this example, we consider the falls.xlsx dataset. Here, by interventional design, individuals who are not assessed are
not offered referral or treatment. In this case, we would observe individuals in our dataset who are not assessed, going
down the ‘Not Referred & Not Treated’ path with probability 1. This is not helpful, and so we choose to condense the
tree and remove this edge. The zero observations for non-assessed individuals for the categories of ‘Referred & Treated’
and ‘Not Referred & Treated’ are both structural zeros.

from cegpy import EventTree
import pandas as pd

dataframe = pd.read_excel("falls.xlsx")
dataframe

HousingAssessment Risk Treatment Fall
0 Community Not Assessed Low Risk NaN Fall
1 Community Not Assessed High Risk NaN Fall
2 Community Not Assessed Low Risk NaN Don't Fall
3 Community Not Assessed Low Risk NaN Don't Fall
4 Community Not Assessed Low Risk NaN Fall
...
49995 Community Not Assessed Low Risk NaN Don't Fall
49996 Community Not Assessed Low Risk NaN Don't Fall
49997 Community Not Assessed Low Risk NaN Don't Fall
49998 Community Not Assessed Low Risk NaN Fall
49999 Community Not Assessed Low Risk NaN Fall

[50000 rows x 4 columns]

Note: When looking at the description of the dataset, the total count in the Treatment column is not equal to the counts
for the other columns. This is the giveaway that the dataset is non-stratified. Extreme care must be taken to ensure that the
dataset really is non-stratified, and doesn’t simply have sampling-zeros or sampling missing values. The package has no
way of distinguishing these on its own unless the user specifies them.

dataframe.describe()

HousingAssessment Risk Treatment \
count 50000 50000 3250
unique 4 2 3
top Community Not Assessed Low Risk Not Referred & Not Treated
freq 45211 42505 1768

Fall
count 50000
unique 2
top Don't Fall
freq 34737

The end result of this is that in the EventTree shown below, paths such as S0 -> S2 -> S7 -> S18 skip the Treatment
variable.

event_tree = EventTree(dataframe)
event_tree.create_figure()

20 Chapter 2. Creating a Chain Event Graph

Python

2.2. Example 2: Chain Event Graph from Non-Stratified Dataset 21

Python

As in the stratified medical example, after initial checks on the dataset, and confirmation that the EventTree looks as
expected, the next step is to identify the stages. For this, we use the StagedTree class, which first creates the EventTree
internally, ready for the user to run a clustering algorithm on it. In this example we use the .calculate_AHC_transitions()
method, which executes the agglomerative hierarchical clustering (AHC) algorithm on the EventTree. The package
functions under a Bayesian framework and priors can be supplied to the AHC algorithm to override the default settings.
The resultant CEG has been reduced from the tree representation to a more compact graph.

from cegpy import ChainEventGraph, StagedTree

st = StagedTree(dataframe)
st.calculate_AHC_transitions()

ceg = ChainEventGraph(st)
ceg.create_figure()

As a CEG is a probabilistic model of a series of events, it may be desirable to view a CEG sub-graph when some or all
of the variables are known. This can be especially true for graphs with lots of variables, which can balloon in size. In
cegpy, this is done by using the ChainEventGraphReducer which is covered on the next page.

22 Chapter 2. Creating a Chain Event Graph

CHAPTER

THREE

REDUCING A CHAIN EVENT GRAPH

A complete CEG shows all possible trajectories that an individual undergoing the process might experience. However,
on observing any evidence, certain or uncertain, some edges and nodes become unvisited with probability 1. The CEG
model can be reduced such that these edges and nodes are excluded, without any loss of information. Once reduced, the
probabilities displayed can be also be revised.
For this example, we will use the falls.xlsx dataset.

from cegpy import StagedTree, ChainEventGraph, ChainEventGraphReducer
import pandas as pd

dataframe = pd.read_excel("falls.xlsx")

staged_tree = StagedTree(dataframe)
staged_tree.calculate_AHC_transitions()

falls_ceg = ChainEventGraph(staged_tree)
falls_ceg.create_figure()

When examining a dataset with a CEG, you may wish to see a subset of the graph, where some events are excluded with
probability zero. Consider the CEG representation of the falls dataset; It may be interesting to split the graph into two
graphs, one for individuals on the Communal paths, and another for people on the Community paths. This is achieved
by using uncertain evidence. In our case, we know that anyone who is community assessed will have either passed along
the Community Not Assessed edge or the Community Assessed edge, which can be done like so:

23

Python

from cegpy import ChainEventGraphReducer

reducer = ChainEventGraphReducer(falls_ceg)
reducer.add_uncertain_edge_set(

edge_set={
("w0", "w4", "Community Not Assessed"),
("w0", "w3", "Community Assessed"),

}
)
print(reducer)

The evidence you have given is as follows:
Evidence you are certain of:

Edges = []
Nodes = {}

Evidence you are uncertain of:
Edges = [
{('w0', 'w4', 'Community Not Assessed'), ('w0', 'w3', 'Community Assessed')},

]
Nodes = {
}

The reduced graph is stored in the graph attribute, and is a ChainEventGraph object.

reducer.graph.create_figure()

Likewise, we can do the same for the Communal graph. In this case, it could be simpler to just specify the sub-graph
which contains all paths that pass through nodes w1 and w2.

reducer = ChainEventGraphReducer(falls_ceg)
reducer.add_uncertain_node_set({"w1", "w2"})
reducer.graph.create_figure()

24 Chapter 3. Reducing a Chain Event Graph

Python

It may also be interesting to see the sub-graph of those Communal individuals who had a Fall.

reducer.add_uncertain_edge_set(
{

(u, v, l)
for (u, v, l) in reducer.graph.edges
if l == "Fall"

}
)
print(reducer)

The evidence you have given is as follows:
Evidence you are certain of:

Edges = []
Nodes = {}

Evidence you are uncertain of:
Edges = [
{('w7', 'w_infinity', 'Fall'), ('w8', 'w_infinity', 'Fall'), ('w9', 'w_

↪infinity', 'Fall'), ('w10', 'w_infinity', 'Fall')},
]
Nodes = {
{'w2', 'w1'},

}

The probabilities are adjusted across all the edges, and back propagated through the graph automatically.

reducer.graph.create_figure()

25

Python

When you would like to adjust the graph to only show paths which pass through a specific edge or node, certain
evidence is used.
Take the following example. You’d like to see what might have happened to an individual who was Communal As-
sessed. This can be done by using the add_certain_edge method.

reducer.clear_all_evidence()

reducer.add_certain_edge("w0", "w1", "Communal Assessed")
or reducer.add_certain_node("w1")
reducer.graph.create_figure()

26 Chapter 3. Reducing a Chain Event Graph

CHAPTER

FOUR

HOW TO MAKE VISUAL CHANGES TO THE GRAPHS?

4.1 Changing the colour palette

By default, the colours of the nodes in cegpy are selected uniformly at random from the entire spectrum of colours. If
we want to use a specific colour palette, a list of colours to be used by the AHC algorithm can be specified as a parameter
when calling the create_AHC_transitions method, for example:

from cegpy import StagedTree, ChainEventGraph
import pandas as pd

df = pd.read_excel('../../data/medical_dm_modified.xlsx')

st = StagedTree(df)
colours = ['#BBCC33','#77AADD','#EE8866','#EEDD88','#FFAABB','#44BB99']
st.calculate_AHC_transitions(colour_list=colours)
ceg = ChainEventGraph(st)
ceg.create_figure()

27

Python

4.2 Modifying graph, node, and edge attributes

The graphs in cegpy are built with GraphViz and PyDotPlus. We can access the underlying pydotplus.
graphviz.Dot object by accessing the dot_graph property. This enables visual modifications of our event
tree, staged tree, or CEG. For example, the following code modifies the distance between the nodes, changes the style of
each edge labelled "Hard" from solid to dashed, and changes the shape of the root node from oval to square.

from IPython.display import Image

g = ceg.dot_graph()
g.set('ranksep', 0.1)
g.set('nodesep', 0.2)

for edge in g.get_edge_list():
if "Hard" in edge.get("label"):

edge.set_style('dashed')

(continues on next page)

28 Chapter 4. How to make visual changes to the graphs?

Python

(continued from previous page)

g.get_node('w0')[-1].set_shape('square')

Image(g.create_png())

For more information about the available graph, node, and edge attributes refer to the GraphViz and PyDotPlus docu-
mentation.

4.2. Modifying graph, node, and edge attributes 29

https://graphviz.org
https://pydotplus.readthedocs.io

Python

30 Chapter 4. How to make visual changes to the graphs?

Part II

API

31

CHAPTER

FIVE

EVENTTREE

class cegpy.EventTree(dataframe: DataFrame, sampling_zero_paths=None, var_order=None,
struct_missing_label=None, missing_label=None, complete_case=False)

Bases: MultiDiGraph
This class extends the NetworkX MultiDiGraph class to allow the creation of event tree representations of data.

Parameters
• dataframe (pandas.DataFrame) – Required - DataFrame containing variables as col-
umn headers, with event name strings in each cell. These event names will be used to create
the edges of the event tree. Counts of each event will be extracted and attached to each edge.

• sampling_zero_paths (List[Tuple[str]] or None) – Optional - Paths to sam-
pling zeros.
Format is as follows: [(‘edge_1’,), (‘edge_1’, ‘edge_2’), …]
If no paths are specified, default setting is that no sampling zero paths are created.

• var_order (List[str] or None) – Optional - Specifies the ordering of variables
to be adopted in the event tree. Default var_order is obtained from the order of columns in
dataframe. String labels in the list should match the column names in dataframe.

• struct_missing_label (str or None) – Optional - Label in the dataframe for
observations which are structurally missing; e.g: Post operative health status is irrelevant for a
dead patient. Label example: “struct”.

• missing_label (str or None) – Optional - Label in the dataframe for observations
which are missing values that are not structurally missing. e.g: Missing height for some indi-
viduals in the sample. Label example: “miss” Whatever label is provided will be renamed in
the event tree to “missing”.

• complete_case (bool) – Optional - If True, all entries (rows) with non-structural missing
values are removed. Default setting: False.

property root: str

Returns
The name of the root node of the event tree, currently hard coded to ‘s0’.

Return type
str

property variables: List

Returns
The column headers of the dataset.

33

Python

Return type
List[str]

property sampling_zeros: Optional[List[Tuple[str]]]

Setting this property will apply sampling zero paths to the tree. If different to previous value, the event tree
will be regenerated.

Returns
Sampling zero paths provided by the user.

Return type
List[Tuple[str]] or None

property situations: List[str]

Returns
The situations of the tree (non-leaf nodes).

Return type
List[str]

property leaves: List[str]

Returns
The leaves of the tree.

Return type
List[str]

property edge_counts: Dict

The counts along edges all edges in the tree, where edges are a Tuple like so: (“source_node”, “destina-
tion_node”, “edge_label”).

Returns
A mapping of edges to their counts.

Return type
Dict[Tuple[str], Int]

property categories_per_variable: Dict

The number of unique categories/levels for each variable (column headings in dataframe).
Returns

A mapping of variables to the number of unique categories/levels.
Return type

Dict[str, Int]
dot_graph(edge_info: str = 'count') → Dot

Returns Dot graph representation of the event tree. :param edge_info: Optional - Chooses which summary
measure to be displayed on edges. In event trees, only “count” can be displayed, so this can be omitted.

Returns
A graphviz Dot representation of the graph.

Return type
pydotplus.Dot

create_figure(filename=None, edge_info: str = 'count') → Optional[Image]
Creates event tree from the dataframe.

Parameters

34 Chapter 5. EventTree

Python

• filename (str) – Optional - When provided, file is saved to the filename, local to the
current working directory. e.g. if filename = “output/event_tree.svg”, the file will be saved
to: cwd/output/event_tree.svg Otherwise, if function is called inside an interactive notebook,
image will be displayed in the notebook, even if filename is omitted. Supports any filetype
that graphviz supports. e.g: “event_tree.png” or “event_tree.svg” etc.

• edge_info (str) – Optional - Chooses which summarymeasure to be displayed on edges.
In event trees, only “count” can be displayed, so this can be omitted.

Returns
The event tree Image object.

Return type
IPython.display.Image or None

35

Python

36 Chapter 5. EventTree

CHAPTER

SIX

STAGEDTREE

class cegpy.StagedTree(dataframe, sampling_zero_paths=None, var_order=None,
struct_missing_label=None, missing_label=None, complete_case=False)

Bases: EventTree
Representation of a Staged Tree.
A staged tree is a tree where each node is a situation, and each edge is a transition from one situation to another.
Each situation is given a ‘stage’ which groups it with other situations which have the same outgoing edges, with
equivalent probabilities of occurring.
The class is an extension of EventTree.

Parameters
• dataframe (pandas.DataFrame) – Required - DataFrame containing variables as col-
umn headers, with event name strings in each cell. These event names will be used to create
the edges of the event tree. Counts of each event will be extracted and attached to each edge.

• sampling_zero_paths (List[Tuple[str]] or None) – Optional - Paths to sam-
pling zeros.
Format is as follows: [(‘edge_1’,), (‘edge_1’, ‘edge_2’), …]
If no paths are specified, default setting is that no sampling zero paths are created.

• var_order (List[str] or None) – Optional - Specifies the ordering of variables
to be adopted in the event tree. Default var_order is obtained from the order of columns in
dataframe. String labels in the list should match the column names in dataframe.

• struct_missing_label (str or None) – Optional - Label in the dataframe for
observations which are structurally missing; e.g: Post operative health status is irrelevant for a
dead patient. Label example: “struct”.

• missing_label (str or None) – Optional - Label in the dataframe for observations
which are missing values that are not structurally missing. e.g: Missing height for some indi-
viduals in the sample. Label example: “miss” Whatever label is provided will be renamed in
the event tree to “missing”.

• complete_case (bool) – Optional - If True, all entries (rows) with non-structural missing
values are removed. Default setting: False.

property prior: Dict[Tuple[str], List[Fraction]]

A mapping of priors keyed by edge. Keys are 3-tuples of the form: (src, dst, edge_label).
Returns

A mapping edge -> priors.

37

Python

Return type
Dict[Tuple[str], List[Fraction]]

property prior_list: List[List[Fraction]]

Returns
Priors in the form of a list of lists.

Return type
List[List[Fraction]]

property posterior: Dict[Tuple[str], List[Fraction]]

Posteriors along each edge, calculated by adding edge count to the prior for each edge. Keys are 3-tuples of
the form: (src, dst, edge_label).

Returns
Mapping of edge -> edge_count + prior

Return type
Dict[Tuple[str], List[Fraction]]

property posterior_list: List[List[Fraction]]

Returns
Posteriors in the form of a list of lists.

Return type
List[List[Fraction]]

property alpha: float

The equivalent sample size set for the root node which is then uniformly propagated through the tree.
Returns

The value of Alpha.
Return type

float
property hyperstage: List[List[str]]

Indication of which nodes are allowed to be in the same stage. Each list is a list of node names e.g. “s0”.
Returns

The List of all hyperstages.
Return type

List[List[str]]
property edge_countset: List[List]

Indexed the same as situations. :return: Edge counts emination from each node of the tree. :rtype: List[List]
property ahc_output: Dict

Contains a List of Lists containing all the situations that were merged, and the log likelihood.
Returns

The output from the AHC algorithm.
Return type

Dict
calculate_AHC_transitions(prior=None, alpha=None, hyperstage=None, colour_list=None) → Dict

Bayesian Agglommerative Hierarchical Clustering algorithm implementation. It returns a list of lists of the
situations which have been merged together, the likelihood of the final model.

38 Chapter 6. StagedTree

Python

Parameters
• prior (Dict[Tuple[str], List[Fraction]]) – Optional - Amapping of priors
keyed by edge. Keys are 3-tuples of the form: (src, dst, edge_label).

• alpha (float) – Optional - The equivalent sample size set for the root node which is then
uniformly propagated through the tree.

• hyperstage (List[List[str]]) – Optional - Indication of which nodes are allowed
to be in the same stage. Each list is a list of node names e.g. “s0”.

• colour_list (List[str]) – Optional - a list of hex colours to be used for stages.
Otherwise, colours evenly spaced around the colour spectrum are used.

Returns
The output from the AHC algorithm, specified above.

Return type
Dict

dot_graph(edge_info: str = 'count', staged: bool = True)
Returns Dot graph representation of the staged tree.

Parameters
• edge_info (str) – Optional - Chooses which summarymeasure to be displayed on edges.
Defaults to “count”. Options: [“count”, “prior”, “posterior”, “probability”]

• staged (bool) – if True, returns the coloured staged tree, if False, returns the underlying
event tree.

Returns
A graphviz Dot representation of the graph.

Return type
pydotplus.Dot

create_figure(filename: Optional[str] = None, edge_info: str = 'count', staged: bool = True) →
Optional[Image]

Draws the coloured staged tree or the underlying event tree for the process described by the dataset.
Parameters

• filename (str) – Optional - When provided, file is saved to the filename, local to the
current working directory. e.g. if filename = “output/event_tree.svg”, the file will be saved
to: cwd/output/staged_tree.svgOtherwise, if function is called inside an interactive notebook,
image will be displayed in the notebook, even if filename is omitted.
Supports any filetype that graphviz supports. e.g: “staged_tree.png” or “staged_tree.svg” etc.

• edge_info (str) – Optional - Chooses which summarymeasure to be displayed on edges.
In event trees, only “count” can be displayed, so this can be omitted.

• staged (bool) – if True, returns the coloured staged tree, if False, returns the underlying
event tree.

Returns
The event tree Image object.

Return type
IPython.display.Image or None

39

Python

40 Chapter 6. StagedTree

CHAPTER

SEVEN

CHAINEVENTGRAPH

class cegpy.ChainEventGraph(staged_tree: Optional[StagedTree] = None, node_prefix: str = 'w', generate:
bool = True)

Bases: MultiDiGraph
Representation of a Chain Event Graph.
A Chain Event Graph reduces a staged tree.
The class is an extension of NetworkX MultiDiGraph.

Parameters
• staged_tree (StagedTree) – A staged tree object where the stages have been calcu-
lated.

• node_prefix (str) – The prefix that is used for the nodes in the Chain Event Graph.
Default = “w”

• generate (bool) – Automatically generate the Chain Event Graph upon creation of the
object. Default = True.

property sink: str

Returns
Sink node name

Return type
str

property root: str

Returns
Root node name

Return type
str

property stages: Mapping[str, Set[str]]

Returns
Mapping of stages to constituent nodes.

Return type
Mapping[str, Set[str]]

property path_list: List[List[Tuple[str]]]

Returns
All the paths through the CEG, as a list of lists of edge tuples.

41

Python

Return type
List[List[Tuple[str]]]

generate() → None
Identifies the positions i.e. the nodes of the CEG and the edges of the CEG along with their edge labels and
edge counts. Here we use the algorithm from our paper with the optimal stopping time.

dot_graph(edge_info: str = 'probability') → Dot
Returns Dot graph representation of the CEG. :param edge_info: Optional - Chooses which summary mea-
sure to be displayed on edges. Defaults to “count”. Options: [“count”, “prior”, “posterior”, “probability”]

Returns
A graphviz Dot representation of the graph.

Return type
pydotplus.Dot

create_figure(filename=None, edge_info: str = 'probability') → Optional[Image]
Draws the coloured chain event graph for the staged_tree.

Parameters
• filename (str) – Optional - When provided, file is saved to the filename, local to the
current working directory. e.g. if filename = “output/ceg.svg”, the file will be saved to:
cwd/output/ceg.svg Otherwise, if function is called inside an interactive notebook, image
will be displayed in the notebook, even if filename is omitted.
Supports any filetype that graphviz supports. e.g: “ceg.png” or “ceg.svg” etc.

• edge_info (str) – Optional - Chooses which summarymeasure to be displayed on edges.
Value can take: “count”, “prior”, “posterior”, “probability”

Returns
The event tree Image object.

Return type
IPython.display.Image or None

42 Chapter 7. ChainEventGraph

CHAPTER

EIGHT

CHAINEVENTGRAPHREDUCER

class cegpy.ChainEventGraphReducer(ceg: ChainEventGraph)
Bases: object
Reduces Chain Event Graphs given certain and/or uncertain evidence.

Parameters
ceg (ChainEventGraph) – Chain event graph object to reduce.

property certain_edges: List[Tuple[str]]

Returns
A list of all edges of the ChainEventGraph that have been observed.

certain_edges is a list of edge tuples of the form: [edge_1, edge_2, … edge_n]

Each edge tuple takes the form: (“source_node_name”, “destination_node_name”, “edge_label”)

property uncertain_edges: List[Tuple[str]]

Returns
A list of sets of edges of the ChainEventGraph which might have occurred.

uncertain_edges is a list of sets of edge tuples of the form: [{(a, b, label), (a, c, label)}, {(x, y, label), (x, z,
label)}]

Each edge tuple takes the form: (“source_node_name”, “destination_node_name”, “edge_label”)

property certain_nodes: Set[str]

Returns
A set of all nodes of the ChainEventGraph that have been observed.

certain_nodes is a set of nodes of the form: {“node_1”, “node_2”, “node_3”, … “node_n”}

property uncertain_nodes: List[Set[str]]

Returns
A list of sets of nodes of the ChainEventGraph where there is uncertainty which of the nodes
in each set happened.

uncertain_nodes is a list of sets of nodes of the form: [{“node_1”, “node_2”}, {“node_3”, “node_4”}, …]

property paths: List[List[Tuple[str]]]

Returns
A list of all paths through the reduced ChainEventGraph.

43

Python

property graph: ChainEventGraph

Returns
The reduced graph once all evidence has been taken into account.

Return type
ChainEventGraph

clear_all_evidence() → None
Resets the evidence provided.

add_certain_edge(src: str, dst: str, label: str) → None
Specify an edge that has been observed.

Parameters
• src (str) – Edge source node label
• dst (str) – Edge destination node label
• label (str) – Label of certain edge

remove_certain_edge(src: str, dst: str, label: str) → None
Specify an edge to remove from the certain edges.

Parameters
• src (str) – Edge source node label
• dst (str) – Edge destination node label
• label (str) – Label of certain edge

add_certain_edge_list(edges: List[Tuple[str]]) → None
Specify a list of edges that have all been observed.

Parameters
edges (List[Tuple[str]]) – List of edge tuples of the form (“src”, “dst”, “label”)

remove_certain_edge_list(edges: List[Tuple[str]]) → None
Specify a list of edges that in the certain edge list to remove.

Parameters
edges (List[Tuple[str]]) – List of edge tuples of the form (“src”, “dst”, “label”)

add_uncertain_edge_set(edge_set: Set[Tuple[str]]) → None
Specify a set of edges where one of the edges has occurred, but you are uncertain of which one it is.

Parameters
edge_set (Set[Tuple[str]]) – Set of edge tuples of the form (“src”, “dst”, “label”)

remove_uncertain_edge_set(edge_set: Set[Tuple[str]]) → None
Specify a set of edges to remove from the uncertain edges.

Parameters
edge_set (Set[Tuple[str]]) – Set of edge tuples of the form (“src”, “dst”, “label”)

add_uncertain_edge_set_list(edge_sets: List[Set[Tuple[str]]]) → None
Specify a list of sets of edges where one of the edges has occurred, but you are uncertain of which one it is.

Parameters
edge_set (List[Set[Tuple[str]]]) – List of sets of edge tuples of the form (“src”,
“dst”, “label”)

44 Chapter 8. ChainEventGraphReducer

Python

remove_uncertain_edge_set_list(edge_sets: List[Set[Tuple[str]]]) → None
Specify a list of sets of edges to remove from the evidence list.

Parameters
edge_set (List[Set[Tuple[str]]]) – List of sets of edge tuples of the form (“src”,
“dst”, “label”)

add_certain_node(node: str) → None
Specify a node in the graph that has been observed.

Parameters
node (str) – A node label e.g. “w4”

remove_certain_node(node: str) → None
Specify a node to be removed from the certain nodes list.

Parameters
node (str) – A node label e.g. “w4”

add_certain_node_set(nodes: Set[str]) → None
Specify a set of nodes that have been observed.

Parameters
nodes (Set[str]) – A set of node labels e.g. {“w4”, “w8”}

remove_certain_node_set(nodes: Set[str]) → None
Specify a list of nodes to remove from the list of nodes that have been observed.

Parameters
nodes (Set[str]) – A set of node labels e.g. {“w4”, “w8”}

add_uncertain_node_set(node_set: Set[str]) → None
Specify a set of nodes where one of the nodes has occurred, but you are uncertain of which one it is.

Parameters
nodes (Set[str]) – A set of node labels e.g. {“w4”, “w8”}

remove_uncertain_node_set(node_set: Set[str]) → None
Specify a set of nodes to be removed from the uncertain nodes set list.

Parameters
nodes (Set[str]) – A set of node labels e.g. {“w4”, “w8”}

add_uncertain_node_set_list(node_sets: List[Set[str]]) → None
Specify a list of sets of nodes where in each set, one of the nodes has occurred, but you are uncertain of which
one it is.

Parameters
nodes (List[Set[str]]) – A collection of sets of uncertain nodes.

remove_uncertain_node_set_list(node_sets: List[Set[str]]) → None
Specify a list of sets nodes to remove from the list of uncertain sets of nodes.

Parameters
nodes (List[Set[str]]) – A collection of sets of uncertain nodes.

45

Python

46 Chapter 8. ChainEventGraphReducer

PYTHON MODULE INDEX

c
cegpy, 33

47

Python

48 Python Module Index

INDEX

A
add_certain_edge()

(cegpy.ChainEventGraphReducer method),
44

add_certain_edge_list()
(cegpy.ChainEventGraphReducer method),
44

add_certain_node()
(cegpy.ChainEventGraphReducer method),
45

add_certain_node_set()
(cegpy.ChainEventGraphReducer method),
45

add_uncertain_edge_set()
(cegpy.ChainEventGraphReducer method),
44

add_uncertain_edge_set_list()
(cegpy.ChainEventGraphReducer method),
44

add_uncertain_node_set()
(cegpy.ChainEventGraphReducer method),
45

add_uncertain_node_set_list()
(cegpy.ChainEventGraphReducer method),
45

ahc_output (cegpy.StagedTree property), 38
alpha (cegpy.StagedTree property), 38

C
calculate_AHC_transitions()

(cegpy.StagedTree method), 38
categories_per_variable (cegpy.EventTree prop-

erty), 34
cegpy

module, 33
certain_edges (cegpy.ChainEventGraphReducer

property), 43
certain_nodes (cegpy.ChainEventGraphReducer

property), 43
ChainEventGraph (class in cegpy), 41
ChainEventGraphReducer (class in cegpy), 43
clear_all_evidence()

(cegpy.ChainEventGraphReducer method),
44

create_figure() (cegpy.ChainEventGraph method),
42

create_figure() (cegpy.EventTree method), 34
create_figure() (cegpy.StagedTree method), 39

D
dot_graph() (cegpy.ChainEventGraph method), 42
dot_graph() (cegpy.EventTree method), 34
dot_graph() (cegpy.StagedTree method), 39

E
edge_counts (cegpy.EventTree property), 34
edge_countset (cegpy.StagedTree property), 38
EventTree (class in cegpy), 33

G
generate() (cegpy.ChainEventGraph method), 42
graph (cegpy.ChainEventGraphReducer property), 43

H
hyperstage (cegpy.StagedTree property), 38

L
leaves (cegpy.EventTree property), 34

M
module

cegpy, 33

P
path_list (cegpy.ChainEventGraph property), 41
paths (cegpy.ChainEventGraphReducer property), 43
posterior (cegpy.StagedTree property), 38
posterior_list (cegpy.StagedTree property), 38
prior (cegpy.StagedTree property), 37
prior_list (cegpy.StagedTree property), 38

49

Python

R
remove_certain_edge()

(cegpy.ChainEventGraphReducer method),
44

remove_certain_edge_list()
(cegpy.ChainEventGraphReducer method),
44

remove_certain_node()
(cegpy.ChainEventGraphReducer method),
45

remove_certain_node_set()
(cegpy.ChainEventGraphReducer method),
45

remove_uncertain_edge_set()
(cegpy.ChainEventGraphReducer method),
44

remove_uncertain_edge_set_list()
(cegpy.ChainEventGraphReducer method),
44

remove_uncertain_node_set()
(cegpy.ChainEventGraphReducer method),
45

remove_uncertain_node_set_list()
(cegpy.ChainEventGraphReducer method),
45

root (cegpy.ChainEventGraph property), 41
root (cegpy.EventTree property), 33

S
sampling_zeros (cegpy.EventTree property), 34
sink (cegpy.ChainEventGraph property), 41
situations (cegpy.EventTree property), 34
StagedTree (class in cegpy), 37
stages (cegpy.ChainEventGraph property), 41

U
uncertain_edges (cegpy.ChainEventGraphReducer

property), 43
uncertain_nodes (cegpy.ChainEventGraphReducer

property), 43

V
variables (cegpy.EventTree property), 33

50 Index

	I Quick Start
	Creation of a Staged Tree
	EventTree Class
	StagedTree Class
	Custom Hyperstages
	Structural and sampling zeros / missing values
	How to distinguish between structural and sampling missing values?
	How to add sampling zeros?

	Creating a Chain Event Graph
	Example 1: Using a Stratified Dataset
	Example 2: Chain Event Graph from Non-Stratified Dataset

	Reducing a Chain Event Graph
	How to make visual changes to the graphs?
	Changing the colour palette
	Modifying graph, node, and edge attributes

	II API
	EventTree
	StagedTree
	ChainEventGraph
	ChainEventGraphReducer
	Python Module Index
	Index

